
Introduction
Multi-spectral, intermediate spatial resolution satellite data, such as Landsat 
TM/ETM+, have been used widely for mapping surface-water bodies at 
regional and national scales. Accurate estimation of surface-water area, 
however, still remains a challenge because the intermediate resolution images 
are not capable of detecting small wetlands or small changes in wetlands 
that are of great ecological significance (Downing et al., 2006; Krankina et 
al., 2008). To compensate for the limitations of the intermediate resolution 
images for mapping small water bodies, a fuzzy classification method can be 
used to estimate subpixel fractions of water and produce a map of continuous 
percent water area. Such methods usually require a large number of field 
training sites or pairs of moderate and high resolution images from the same 
time period. We avoid these limitations by developing a regression-based 
fuzzy classification technique capable of collecting training data from the 
Landsat image itself to map water features. We applied the method to 

study sites in the Yukon Flats of Alaska and the Prairie Pothole Region of 
North Dakota. Three other statistical classification techniques were also 
applied to the same Yukon Flats image for comparison.

Water Mapping Methods
The initial process included producing water and nonwater maps from a 
Landsat image (30-m resolution) and a SPOT image (5-m and 10-m 
resolution in the Yukon Flats and PPR, respectively) acquired on 
corresponding dates. The binary water maps were generated with a See5 
decision tree model (Quinlan, 1993, 2005) that captured surface water at both 
resolutions with error rates of 1.5% (SPOT) and 3.3% (Landsat). Predictor 
variables included the spectral bands, NDVI (Normalized Difference 
Vegetation Index), NDPI (Normalized Difference Pond Index), band 4 and 5 
ratios, principal components, and canopy cover (LANDFIRE).

Landsat TM (RGB = 5,4,3) and water (blue hatch) on August 20, 2007 in the 
lower mouth of Birch Creek and Canvasback Lake, in the Yukon Flats of 
Alaska, developed from a decision tree model.

SPOT 5 (RGB = 1,2,3) and water (blue hatch) on August 28, 2007 in the lower 
mouth of Birch Creek and Canvasback Lake, in the Yukon Flats of Alaska, 
developed from a decision tree model.

Percent Water Methods, Results, and Validation
The water extents derived from the 5-m SPOT image, acquired at an 
analogous date, were used to determine percent water within each Landsat 
30-m pixel. The SPOT 30-m and the Landsat 30-m subpixel percent water 
images were then scaled to 90 m for a final assessment of the Landsat-

estimated percent water area products. The new method produced a model 
with a higher R2 value (0.92) than the endmember (R2=0.89) or linear 
unmixing classification (R2=0.86) methods. The new method was comparable 
to our control, percent water mapped directly from a SPOT image (R2=0.93),

and does not require high resolution images from the same time period 
for model development. For surface water change studies, the new method 
provides an opportunity to utilize archival moderate resolution imagery.

Discussion 
The 90-m regression tree method, when applied in the PPR, produced 
better results than in the Yukon Flats upon visual inspection. The lack 
of tree shadows increased our ability to correctly identify water bodies, 
generally decreasing the number of incorrectly identified water pixels. In 
both the Yukon Flats and PPR 90-m regression models, the R2 were 0.96 
and 0.86, respectively, and the mean absolute errors were 5.2% and 5.3%, 
respectively, showing high goodness-of-fit. In the Yukon Flats, the new self-
trained percent water mapping method produced a model with a higher R2 
value (0.92) than the linear unmixing classification (R2=0.86) method.

The new method was also comparable to our control, percent water mapped 
directly from a high resolution SPOT image (R2=0.93), but does not require 
high resolution training images for model development.
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A comparison of four statistical classification approaches to evaluate a new method for producing 30-m subpixel percent water maps from Landsat imagery
The endmember approach for constructing a 
rule-based percent water model restricts the 
training data to Landsat pixels that contained 
0 and 100% water as determined from visual 
interpretation of the Landsat image. A 
regression tree model was used to predict 
continuous fractions (percents) of water in 
all pixels. This technique assumed that the 
spectral properties of both endmembers 
were representative of spectral percentages 
(fractions) that fall between the minimum (0) 
and maximum (100) percent.

The linear unmixing approach also decomposes 
fractional components of pixels. This unmixing 
technique used a spectral library consisting 
of each endmember’s spectra, limited to 
pure pixels containing water, vegetation, 
bare soil, and shadows in the Landsat image. 
Representative pure pixels establish the 
reflectance signature of the endmembers. An 
unconstrained unmixing algorithm (ENVI, 1999) 
was applied to the Landsat image to estimate 
the fractions (percent) of each endmember 
within a Landsat pixel. The sum of each pixel’s 
fractions was then constrained to 100%.
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SPOT 5 (RGB = 4,1,3) image of the PPR
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A Landsat subpixel percent water model, 
predicted directly from a 5-m SPOT image 
from the same time period, provided an ideal 
mean for evaluating our new technique. The 
modeling process included converting the 5-m 
water/nonwater image to a 30-m percent water 
map. The 30-m SPOT percent water map was 
then used to develop a Landsat percent water 
regression model. The regression model was 
then applied to the entire Landsat scene.
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Self-trained Regression Tree ModelOur new method produced subpixel percent 
water from Landsat data. The approach used 
a regression tree model where the predictor 
variables are the spatial average of a 3- by 
3-pixel (90- by 90-m) window for each Landsat 
spectral reflectance band and several 
derivatives (e.g., NDVI). The response variable, 
percent water, was calculated from the number 
of water pixels in the TM water image that were 
located within the same 3- by 3-pixel (90- by 
90-m) window area. The regression tree model, 
developed from the percent water estimated 
within each 90-m window, is then applied to the 
30-m Landsat image.
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